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Abstract

We consider a non-isothermal one-dimensional model of martensitic phase transitions that incorporates a finite bar

with a non-monotone temperature-dependent stress–strain law and non-zero latent heat. Two dissipation mechanisms

are considered: heat conduction and the internal viscous dissipation of kinetic origin. Time-dependent displacement and

ambient temperature are prescribed at the ends of the bar. Numerical simulations of this model predict both rate-

independent hysteresis, which persists at slow loading, and the rate-dependent portion due to thermal effects. The loops

possess serrations caused by nucleation and annihilation events and the motion of interfaces. We observe that when

heat conductivity is large, or the applied loading is sufficiently slow, the results are similar to those of Vainchtein and

Rosakis [Journal of Nonlinear Science 9 (6) (1999) 697] for the isothermal case, with serrated loops accompanied by

nucleations and stick–slip motion of phase boundaries. At faster loading and smaller heat conductivity (or larger latent

heat), the stick–slip interface motion is partially replaced by irregular slow–fast interface motion and damped temporal

oscillations in both released heat and end load. We show that at higher loading rates more interfaces are formed, and

the phase transition causes self-heating of the bar, in qualitative agreement with experimental observations. � 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Shape memory alloys (for example, NiTi, CuAlNi) is a class of smart materials that has attracted a lot of
attention during the last 20 years. One of the remarkable properties exhibited by these materials is called
pseudoelasticity and refers to the ability of the material in a certain temperature regime to accommodate
large deformations (up to 8% strain) during isothermal mechanical loading and then completely recover
upon unloading. When subjected to a cycling loading, the material exhibits hysteresis, thus absorbing and
releasing large amounts of energy. A possible practical application of this property is vibration damping
where the shape memory materials have been shown to be much more effective than the conventional alloys
used for this purpose (Li and Feng, 1997). Other applications include eyeglass frames, medical guide wires
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and arch wires for orthodontic correction. The underlying mechanism for pseudoelasticity is the trans-
formation, induced by the loading, from austenite to martensite material phases, and the formation and
motion of phase boundaries. Frequently, a finely layered microstructure containing alternating layers of
both phases is formed in the process.
In his pioneering work, Ericksen (1975) has shown the fundamental importance of a non-convex elastic

energy for the hysteretic behavior of crystalline solids. This approach was then further developed and led to
the important contributions by a number of researchers (see James, 1992, for a review). In addition, many
interesting experimental results were obtained (Chu, 1993; Leo et al., 1993; Shaw and Kyriakides, 1995;
Shield, 1995). While a significant progress has been made, in particular, in understanding the basic features
of microstructure, some phenomena are still not completely understood.
Some of the questions that remain to be fully addressed are the dynamics of phase boundaries, the origin

of pseudoelastic hysteresis and the development of a relatively simple model capable of predicting the size
and features of the experimentally observed hysteresis loops. Recent experiments (Leo et al., 1993; Shaw
and Kyriakides) clearly indicate that such a model must necessarily account for the strong coupling be-
tween the deformation and thermal fields. While the experiments are conducted isothermally, locally the
temperature experiences significant changes during both nucleation and phase boundary motion, due to the
latent heat of the transformation. This leads to the phenomenon of self-heating (self-cooling) during loading
(unloading). The observed hysteresis loops thus consist of two parts: the isothermal (or quasistatic) portion,
which does not depend on the loading rate, and the rate-dependent portion which is due to the thermal
effects. 1 Both experimental work and recent numerical simulations (Bubner, 1996; Shaw, 2000) point out
the importance of coupling between the temperature and deformation as a key to a better understanding of
hysteretic behavior in shape memory alloys subjected to cyclic loading.
Until recently, most work on the dynamics of phase transitions in a finite bar has concentrated on either

purely mechanical (isothermal) models, assuming an instantaneous heat release (see, for example, F�aaciu
and Suliciu, 1994; Vainchtein and Rosakis, 1999), or, in another extreme, purely thermal descriptions, (e.g.
Leo et al., 1993), assuming that the motion is controlled by the latent heat removal while phase trans-
formation and stress relaxation are instantaneous. Both approaches, while leading to the important con-
tributions, were only partially successful at explaining the experimentally observed hysteresis loops. Indeed,
while the purely mechanical description is able to predict rate-independent hysteresis, the isothermal as-
sumption does not describe the self-heating phenomenon and rate-dependent part of the hysteresis loop.
Similarly, the purely thermal models fail to predict the rate-independent part of hysteresis arising due to
metastability of equilibria (Vainchtein and Rosakis, 1999).
One of the first models of interface dynamics that included the coupling between the temperature and

deformation fields in the non-convex free energy density of an elastic bar was formulated by Abeyaratne
and Knowles (1993) in the context of sharp interface theory, which prescribed a kinetic relation between
interface velocity and the driving force of phase transformation. This relation thus took into account the
internal dissipation due to phase transition and regularized the problem which is otherwise ill-posed (James,
1980). Additional, thermal, dissipation was also taken into account via the heat conduction mechanism.
Abeyaratne and Knowles (1993) also employed a separate phase nucleation criterion.
An alternative approach, used in this paper, is to model the internal dissipation by incorporating viscous

stresses. This approach has been widely used in the purely mechanical models, both with Kelvin–Voigt vis-
cosity model employed in this model (Ball et al., 1991; Fonseca et al., 1994; Friesecke andMcLeod, 1996, 1997;

1 Throughout this paper, we will refer to hysteresis as being rate-dependent (independent) if its size, defined as the maximum width of

a hysteresis loop, does (does not) depend on the loading rate. We remark that other features of a hysteresis loop, such as the amplitude

and frequency of serrations, do depend on the loading rate even at a very slow loading. However, the size of the hysteresis does not

significantly change under these conditions.
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Kalies, 1994; Pego, 1987; Theil, 1998; Truskinovsky, 1994; Vainchtein and Rosakis, 1999) and with
Maxwell viscosity (F�aaciu, 1996a,b; F�aaciu and Suliciu, 1994). Similarly to the work of Abeyaratne and
Knowles (1993), the present model includes a temperature-dependent non-monotone stress–strain law and
takes into account inertia, heat conduction and latent heat. Traveling wave solutions for a similar model on
an infinite bar have been studied by Ngan and Truskinovsky (1999), who have shown that a particular
kinetic relation results from including the viscous stresses (see also Truskinovsky, 1994, for the isothermal
case). Similar thermodynamic models for the case of constant traction or displacement boundary conditions
in a finite bar have been studied by Dafermos (1982); Dafermos and Hsiao (1982), Chen and Hoffman
(1994) and Jiang (1993), who have shown the global existence of smooth solutions. Racke and Zheng (1997)
obtained global existence, uniqueness and the asymptotic behavior of weak solutions to a similar model for
the case when both ends of the bar are insulated and at least one end is stress-free. In contrast, our model
includes time-dependent boundary conditions at the ends of the bar to mimic the tension tests on shape-
memory bars and wires. The model results in an initial-boundary value problem containing two strongly
coupled non-linear partial differential equations. While mathematically the problem becomes more complex
than that of Abeyaratne and Knowles (1993), its advantage is that no additional kinetic relation or nu-
cleation criterion needs to be prescribed. In our model, the motion and formation of interfaces occur after
the loading forces the strain to enter the spinodal region, or the interval of strains at which the stress de-
creases, in part of the bar. The spinodal instability then causes an increase in the strain gradient, and phase
boundaries start to form, while the system attempts to approach one of the infinitely many multi-phase
metastable equilibria. The location and number of boundaries are determined by the viscous and thermal
dissipation and the applied strain rate.
A similar approach was independently undertaken by F�aaciu (2001), who used a Maxwell viscosity in

place of the Kelvin–Voigt viscosity model considered here. While the thermomechanical model studied by
F�aaciu (2001) is more complex, including numerous parameters and aiming at the quantitative prediction of
the experimental observations, the primary goal of the present work is to qualitatively capture the basic
features of the experimental observations and understand the main mechanisms, while keeping the model as
simple as possible. This allows us to substantially reduce the number of parameters which makes some
analytical work and parameter studies more feasible. Both models are one-dimensional, unlike the plas-
ticity-based three-dimensional model of Shaw (2000). While this has certain disadvantages, in particular
inability to predict higher-dimensional phenomena such as criss-cross pattern of interface formation (Shaw
and Kyriakides, 1995), it is our hope that a simpler model will shed some more light on the very complex
nature of interface dynamics and temperature-deformation coupling.
Another, not viscosity-based, regularization was used by Bubner (1996), who considered a one-dimen-

sional Ginzburg–Landau–Devonshire free energy density, with a strain-gradient term that models inter-
facial energy, and thermal dissipation in the form of heat conduction. This model is able to predict thermal
hysteresis but, unlike the present model, it cannot capture a realistic quasistatic hysteresis because in this
case there is a range of end displacements for which there exists only one stable equilibrium, with one phase
boundary (Vainchtein and Rosakis, 1999). In addition, the numerical scheme used by Bubner (1996)
sometimes yields a mesh-sensitive hysteresis size.
We show that our model is capable of predicting both isothermal and thermal (rate-dependent) portions

of hysteresis and the self-heating (self-cooling) effects during loading (unloading). The model also predicts
an experimentally observed (Krishnan, 1985) irregular interface motion. Vainchtein and Rosakis (1999)
have shown that in the isothermal case (i.e. infinite specific heat) the model results in an alternating stick
and slip motion of phase boundaries. In the stick regime, the system followed one of the branches of
metastable equilibria with frozen interface locations, while during the slip regime, the spinodal instability
resulted in switching from one metastable branch to another, with different interface locations. Phase
nucleation, annihilation and interface slip events resulted in serrated hysteresis loop which are often ob-
served (Krishnan, 1985; Krishnan and Brown, 1973; Nakanishi, 1975). In this paper, we show that the
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stick–slip dynamics is still present at slow loading, small latent heat or high heat conduction. However,
faster loading, intermediate heat conduction or higher latent heat all result in the stick–slip dynamics being
replaced by the smooth but still irregular, slow–fast motion of phase boundaries. This is caused by the
inability of the system to remove the heat of transformation quickly enough in order to approach an
equilibrium and the resulting competition between the material instability and stabilization due to applied
loading. Thus the end-load serrations formerly caused by the stick–slip motion smoothen, and the re-
maining serrations correspond to nucleation and phase annihilation events. At sufficiently small heat
conduction, the smooth interface motion is eventually blocked by the tendency of the system to form
multiple boundaries and subsequent stick–slip interface motion and phase annihilation events. Formation
of more transformation fronts is also observed at higher loading rates, in qualitative agreement with ex-
perimental observations (Shaw and Kyriakides, 1995). By linearizing the problem about an unstable
equilibrium and studying the instability growth, we show that multiple nucleation is a result of the dis-
persion which is especially pronounced at smaller heat conductivity. We show that wider and more inclined
hysteresis loops are observed at higher loading rates, in qualitative agreement with experiments (Leo et al.,
1993). Finally, we also comment on the effect of viscosity, latent heat and ambient temperature on the
interface dynamics.
The structure of this paper is as follows. In Section 2 we introduce the model. In Section 3 we recall some

earlier results (Vainchtein and Rosakis, 1999) for the isothermal case. Linear stability analysis of uniform
equilibria and the dispersion relation are described in Section 4. The main numerical results and discussion,
concentrating on the roles of the main dimensionless parameters, are presented in Section 5. Finally,
Section 6 contains summary of the results and concluding remarks.

2. The model

Consider a viscoelastic bar of initial length l0 and density q. Let x 2 ½0; l0�, t 2 ½0;1Þ and uðx; tÞ be the
reference coordinate, time and the longitudinal displacement field, respectively. Let F ðux; hÞ denote the free
energy density of the bar, where uxðx; tÞ is the strain and hðx; tÞ is the temperature field. Following the
approach of Ericksen (1975), we assume that in a certain temperature range, elastic stress

rðux; hÞ ¼ oF =oux ð1Þ

is a non-monotone function of strain ux, first increasing, then decreasing and increasing again as strain is
increased. The intervals of strain in which the elastic stress increases with strain correspond to two different
material phases. The strain interval of decreasing stress is called the spinodal region. The values of strain at
which the Maxwell line––a line r ¼ rMðhÞ that divides the stress–strain graph at fixed h into two regions
with equal areas––intersects the stress–strain curve are called the Maxwell strains (see Fig. 1).
The equilibrium solutions ðuðxÞ; hÞ for such a bar, when it is placed in a hard device (displacement-

controlled loading) at temperature h0, need to satisfy

h ¼ h0 ¼ const:; rðux; h0Þ ¼ const:;
uð0Þ ¼ 0; uðl0Þ ¼ d:

�
ð2Þ

Here one end of the bar is fixed, and d denotes the prescribed displacement of the other end. A trivial
solution to (2), with uniform strain, is uðxÞ ¼ ðd=l0Þx; it is, however, unstable when strain is in the spinodal
region. As Ericksen (1975) has shown, an uncountable infinity of other solutions can be constructed. These
solutions have continuous displacement uðxÞ but a piecewise-constant strain u0ðxÞ, alternating between two
values, say, e1 and e2. The finite jump discontinuities in strain can be thought of as phase boundaries. The
values e1;2 need to be chosen so that
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rðe1; h0Þ ¼ rðe2; h0Þ;
se1 þ ð1
 sÞe2 ¼ d=l0;

�
ð3Þ

where s is the volume fraction of the strain e1. Then (2) is automatically satisfied. Such solutions are stable,
in the sense that they are local minimizers of energy with respect to smooth variations that freeze the lo-
cations of interfaces. There are infinitely many of these solutions because, for a given d, only the volume
fraction s can be found, while the locations and number of phase boundaries are otherwise completely
arbitrary. There is also an infinite number of global energy minimizers, that have strain alternating between
the Maxwell strains w1 and w2 (see Fig. 1). However, as remarked below, the local minimizers turn out to be
more important for the dynamics problem considered here since these are dynamically stable (Pego, 1987;
Friesecke and McLeod, 1997; Vainchtein and Rosakis, 1999).
To simplify the dynamic analysis, we consider, after Ngan and Truskinovsky (1999), the free energy

density

F ðux; hÞ ¼ ðK þ AhÞux þ l
1

4
u4x

�

 1
2
u3x þ

1

4
u2x

�

 ceh log

h
hT

þ ceh: ð4Þ

The elastic stress is then of the form

rðux; hÞ ¼ K þ Ah þ luxðux 
 1=2Þðux 
 1Þ: ð5Þ

Here we assume that isothermal stress–strain relation is cubic, Maxwell strains w1 ¼ 0 and w2 ¼ 1 are
independent of temperature, and Maxwell stress is a linear function of temperature, rMðhÞ ¼ K þ Ah.
Parameter l is twice the elastic modulus at small strains. The specific heat ce is assumed to be constant. The
material constant A controls the latent heat of transformation. When A > 0, heat is released when material
transforms from the low-strain phase to the high-strain phase, and the Maxwell stress increases with
temperature.

Fig. 1. Non-monotone stress–strain relationship rðux; hÞ at fixed temperature.
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Using the above expressions for (4) and (5) for the free energy density and elastic stress, respectively, we
obtain the following thermodynamics problem:

qutt ¼ ½rðux; hÞ þ cuxt�x;
ceht ¼ jhxx þ cu2xt þ Ahuxt;
uð0; tÞ ¼ 0; uðl0; tÞ ¼ dðtÞ;
uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ 0;
hð0; tÞ ¼ hðl0; tÞ ¼ h0;
hðx; 0Þ ¼ h0:

8>>>>>><
>>>>>>:

ð6Þ

The first and second terms of Eq. (6) express the linear momentum balance and the energy balance, re-
spectively. Here we introduce two different mechanisms of energy dissipation. The first one is the heat
conduction, with coefficient of heat conductivity j > 0. Another mechanism is the internal dissipation
of kinetic origin, modeled by a Kelvin–Voigt viscosity, with coefficient c > 0. Note that the boundary
conditions (third term of (6)) are time-dependent, in an attempt to model the tension experiments on shape-
memory-alloy wires, with one end fixed, and another subjected to prescribed displacement. The tempera-
ture at the ends equals the ambient temperature h0. Initially, the bar is in an equilibrium state u0ðxÞ at a
constant temperature h0.
To reduce the number of parameters, we non-dimensionalize the system (6). Choose the length scale l0

(the initial length of the bar), the stress scale l (recall (5)), the temperature scale l=ce and let the time scale
be l0

ffiffiffi
q

p
=

ffiffiffi
l

p
. Without loss of generality, we choose K ¼ l (observe that (6) is independent of K). Intro-

ducing dimensionless variables

�tt ¼
t

ffiffiffi
l

p

l0
ffiffiffi
q

p ; �xx ¼ x
l0
; �uu ¼ u

l0
; �hh ¼ hce

l
ð7Þ

and dimensionless parameters

�cc ¼ cffiffiffiffiffiffi
lq

p
l0
; �AA ¼ A

ce
; �hh0 ¼

h0ce
l

; �jj ¼ j
ffiffiffi
q

p

l0
ffiffiffi
l

p
ce
; �ddð�ttÞ ¼

dð�ttl0
ffiffiffi
q

p
=

ffiffiffi
l

p Þ
l0

; ð8Þ

we obtain the dimensionless initial-boundary value problem

utt ¼ ½r̂rðuxÞ þ Ah þ cuxt�x;
ht ¼ jhxx þ cu2xt þ Ahuxt;
uð0; tÞ ¼ 0; uð1; tÞ ¼ dðtÞ;
uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ 0;
hð0; tÞ ¼ hð1; tÞ ¼ h0;
hðx; 0Þ ¼ h0;

8>>>>>><
>>>>>>:

ð9Þ

where all the bars have been dropped and r̂rðwÞ ¼ 1þ wðw
 1=2Þðw
 1Þ represents the dimensionless
‘‘temperature-free’’ part of the elastic stress. We remark on the meaning of the new dimensionless pa-
rameters, formerly denoted by barred letters, as in (8). The new c represents the ratio between time scales
due to viscosity (given by

sc ¼
c
l

ð10Þ

in original physical variables) and inertia. The new A compares the Clausius–Clapeyron constant (measure
of latent heat) to specific heat. Parameter h0 is now dimensionless ambient temperature. The non-dimen-
sional j compares the time scale due to inertia to that arising from heat conduction (given by
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sj ¼ cel20
j

ð11Þ

in original variables).
We consider the following loading program:

dðtÞ ¼

_dd t2

2ti
þ D for 06 t6 ti;

_ddðt 
 1
2
tiÞ þ D for ti6 t6 tT 
 ti;


 _dd ðt
tTÞ2
2ti

þ DT for tT 
 ti6 t6 tT;

8><
>: ð12Þ

with the constant loading rate

_dd � DT 
 D
tT 
 ti

ð13Þ

except for the initial ‘‘impulse’’ time 06 t6 ti and the switch to unloading tT 
 ti6 t6 tT. Here dð0Þ ¼ D is
the initial applied strain (recall that dðtÞ is now dimensionless and equal to original displacement divided by
the initial length), DT is the maximum applied strain, and tT is the total loading time (see Fig. 2). To study
hysteresis, we let the system relax to a high-strain-phase equilibrium (as it is done in experiments), and then
unload it back to the low-strain phase at the rate 
 _dd.
The non-linearity of the problem (9) and the strong coupling between the temperature and displacement

fields are better revealed if we express hðx; tÞ in terms of uðx; tÞ from the first term of (9) (assuming non-zero
A):

h ¼ 1

A
SðtÞ

�



Z 1

x
utt dy 
 r̂rðuxÞ 
 cuxt

�
: ð14Þ

Here

SðtÞ ¼ ½r̂rðuxðx; tÞÞ þ cuxtðx; tÞ�x¼1 þ Ah0 ð15Þ
is the end load (or effective stress). Substituting (14) in the second term of (9) and employing the boundary
and initial conditions in (9), we obtain the following system in terms of displacement field alone:

ðc þ jÞuxtt ¼ jðr̂rðuxÞÞxx þ cjuxxxt þ uxt A r̂rðuxÞ þ
R 1
x utt dy 
 SðtÞ

� �

 r̂r0ðuxÞ

h i
þ S0ðtÞ 


R 1
x uttt dy;

uð0; tÞ ¼ 0; uð1; tÞ ¼ dðtÞ;
R 1
0
utt dy ¼ ½r̂rðuxÞ þ cuxt�x¼1x¼0;

uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ 0; uttðx; 0Þ ¼ ðr̂rðu00ðxÞÞÞx:

8>>><
>>>:

ð16Þ

Fig. 2. Loading rate.
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The first term of Eq. (16) is nonlocal (due to inertia) and highly nonlinear. When the strain wðx; tÞ ¼ uxðx; tÞ
is in one of the phases, it is a nonlinear wave equation for w, with two damping terms: a linear term cjwxxt

and a nonlinear (and generally nonlocal) term

wt A r̂rðwÞ
��

þ
Z 1

x
utt dy 
 SðtÞ

�

 r̂r0ðwÞ

�
:

The nonlinear damped wave equation arises due to heat conduction and the strong coupling between the
temperature and deformation fields, and it persists even when the inertia term is neglected. We will come
back to this point later.

3. Isothermal case: serrated loops and stick–slip motion

In this section we briefly recall some earlier results for the isothermal case in which the heat is assumed to
be removed instantaneously (infinite specific heat ce in (6)) and the temperature is constant in the bar. The
problem then reduces to a purely mechanical description. It was considered by Vainchtein and Rosakis
(1999), for the case of symmetric boundary conditions and the cubic stress–strain relation rðuxÞ ¼ u3x 
 ux:

qutt ¼ ½rðuxÞ þ cuxt�x;
uð0; tÞ ¼ 
dðtÞ; uð1; tÞ ¼ dðtÞ;
uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ 0:

8<
: ð17Þ

The results are summarized in Fig. 3. Initially, the material was in the low-strain phase, with uniform strain
ux ¼ 
1. As the loading was applied, the strain in the bar increased, and eventually entered the spinodal
region. The spinodal instability then led to the formation of several interfaces (two in the simulation shown
here). Afterward, the phase boundaries underwent an irregular stick–slip motion, a series of alternating
quasistatic (stick) and dynamic (slip) events. During the stick regime, the system followed rather closely one
of the quasistatic solution branches (shown by the dashed lines in Fig. 3) with fixed volume fraction s of the
low-strain phase, motionless sharp interfaces and increasing average strain. After the strain in a portion of
the bar entered the spinodal region, the slip event occurred, and the old strain discontinuities (interfaces)
were smoothened and replaced by the new ones at different locations, thus approaching another quasistatic
branch, with smaller s. More details can be found in Vainchtein and Rosakis (1999). The hysteresis loops

Fig. 3. The results of simulation for the isothermal model (17) with q ¼ 0:05, c ¼ 0:1, tT ¼ 100, ti ¼ 0:01. The thick solid line gives the
load (S) versus elongation (d) for the dynamic solution. The dashed lines correspond to analytically computed quasistatic solution

branches. The volume fraction s of the low-strain phase is fixed along each branch. Only the quasistatic branches followed by the

dynamic solution during the stick regime are shown. The drops in S for the dynamic solution correspond to the nucleation (first drop)

and slip events. From Vainchtein and Rosakis (1999).
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obtained in the isothermal case are thus serrated, and the interfaces move irregularly, in qualitative
agreement with some quasistatic experiments in single-crystal shape-memory alloys (Krishnan, 1985).
Similar results have been also obtained by F�aaciu and Suliciu (1994) for a Maxwell rate-type viscosity model
in place of the Kelvin–Voigt model studied here.
The important conclusion following from these studies is that the isothermal (quasistatic, rate-inde-

pendent) portion of the hysteresis is primarily due to the material getting locked in the metastable equi-
librium branches. At slow loading, the viscous effects are rather minor, and do not significantly contribute
to hysteresis. In contrast to the purely thermal descriptions (Leo et al., 1993), where the size of isothermal
hysteresis, rhyst, had to be postulated, the purely mechanical models mentioned here are able to predict rhyst
and its origin.
What these models cannot predict, unlike Leo et al., 1993), is the thermally induced, rate-dependent

portion of the hysteresis, as well as other thermal effects, such as self-heating (self-cooling) during loading
(unloading). As we shall see below, the model considered in the present paper is able to predict both
isothermal hysteresis and thermal effects.

4. Dispersion relation

We now return to the full thermodynamics description (9). Before we describe the numerical solution to
(9), it is useful to take a look at the linear stability of equilibrium solutions with uniform strain and constant
temperature, at constant end displacement dðtÞ ¼ d0. With this in mind, we linearize (16) about such an
equilibrium ðd0x; h0Þ. We then obtain the following eigenvalue problem for the perturbation gðx; tÞ from the
equilibrium displacement:

ðc þ jÞgxtt ¼ jngxxx þ cjgxxxt 
 ðk þ nÞgxt 

R 1
x gttt dy;

gð0; tÞ ¼ gð1; tÞ ¼ 0;
R 1
0

gtt dy ¼ ½ngx þ cgxt�
x¼1
x¼0:

(
ð18Þ

Here n ¼ r̂r0ðd0Þ is a local elastic modulus when positive and a measure of material instability when negative
(i.e. when linearization is about the strain in spinodal region), and k ¼ A2h0 is the measure of latent heat.
Seeking the perturbation in the form of sine Fourier series

gðx; tÞ ¼
X
even n

An e
xt sinðpnxÞ ð19Þ

(the sum is over even n so that the boundary conditions (18, second term) are satisfied), we arrive at the
following dispersion relation:

x3 þ ðj þ cÞx2ðpnÞ2 þ x½ðk þ nÞðpnÞ2 þ jcðpnÞ4� þ jnðpnÞ4 ¼ 0: ð20Þ

This cubic equation has three roots. If n is positive, the real parts of all three roots are negative, thus
implying linear stability of states in either of the phases (Ngan and Truskinovsky, 1999). When we linearize
about the state with strain in spinodal region, n ¼ r̂r0ðd0Þ is negative, and one of the three roots of (20) is real
and positive, thus causing exponential growth of perturbations and material instability. It can be shown
that this is also the only root with positive real part.
Let xn be the rate of instability growth. Fig. 4 shows the effect of the three main dimensionless para-

meters, j, k and c, on the resulting dispersion curves. Two special cases need to be considered. In the first,
isothermal, case, both j and k vanish (infinite specific heat), and the dispersion curve is shown by a thick line
in Fig. 4a. In the second, adiabatic, case, only j vanishes (zero heat conductivity), and the dispersion curve
is shown by a dashed line in Fig. 4a. As in the purely mechanical model (Vainchtein and Rosakis, 1999),
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both curves show some dispersion due to inertia. In each case, as n tends to infinity, xn tends to a constant
given by 
ðk þ nÞ=c. Notice that the limit is lower in the adiabatic case due to the presence of latent heat
measured by k > 0. No instability is observed in the adiabatic case if k þ n > 0 (positive adiabatic sound
speed) even if linearization is about the state with strain in the spinodal region (n < 0).
Now consider a general heat-conductive material. In this case a dispersion curve is close to the adiabatic

one (with the same initial slope, p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk þ nÞ

p
, if k þ n is negative, and zero otherwise), but approaches the

isothermal curve at large mode numbers n (see Fig. 4a). This behavior creates an additional dispersion due to
heat conduction which persists even if inertia term is neglected. This dispersion is especially pronounced at
small j. Since the initial slope is controlled by the latent heat, as shown in Fig. 4b, the low modes grow
slower than in the isothermal case.
It can be shown that, for a given initial perturbation, only a finite range of modes will be amplified the

most, with the maximum number nmax higher at smaller (non-zero) heat conductivity j due to the additional
dispersion. Similarly to the isothermal case (Vainchtein and Rosakis, 1999), the maximum number of
amplified modes also increases as the viscosity c is decreased (see Fig. 4c for the effect of viscosity on xn). In
nonlinear regime, these instabilities lead to formation of interfaces. Thus, we can expect to see more phase
boundaries forming at smaller non-zero j and smaller c.

Fig. 4. The effect of (a) heat conductivity j, (b) measure of latent heat k, (c) viscosity c on the rate of instability growth xn.
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5. Thermodynamics: numerical results and discussion

In this section we describe the numerical solutions of (9), concentrating on the effect of the main di-
mensionless parameters: heat conductivity j, latent heat constant A, ambient temperature h0, viscosity c
and loading rate _dd. We have used the following semi-implicit finite-difference algorithm to approximate (9).
At each time-step, the displacement field was calculated first. Here we adapted the scheme of Swart (1991)
to solve the first term of (9), which uses the central-difference approximation for the acceleration term utt,
the implicit Euler method for the viscosity term cuxt and incorporates the explicit conservation-form ap-
proximation of the nonlinear term. Once the displacement was updated, temperature was calculated using
the implicit Crank–Nicolson method to approximate the energy balance (second term (9)). Convergence of
the numerical method was checked by reducing the mesh sizes in both space and time, and no mesh de-
pendence was found in the results presented below.

5.1. Effect of j

We start with the effect of dimensionless heat conductivity j. The numerical results are summarized in
Fig. 5. In all simulations presented in this paper, the bar is initially in the low-strain-phase equilibrium. The
applied loading, combined with the fixed-temperature boundary conditions (fifth term (9)), creates the
temperature gradient (concave temperature profile) which, in turn, creates a strain gradient (convex strain
profile). Thus the strain at the ends of the bar enters the spinodal region first, and two phase boundaries are
formed. As j is decreased, this first interface formation occurs sooner because the bar is heated up more by
the loading, which results in a higher strain gradient.
When j is large (see the case j ¼ 100 in Fig. 5), the material behavior is almost isothermal: like in the

isothermal case, the system undergoes a series of nucleations and then stick–slip interface motion, with the
heat generated by transformation quickly removed during the nucleation, slip and annihilation events. See
also Fig. 6. Except for these dynamic events, the temperature field is almost uniform, and in each of the
stick regimes the system is close to an equilibrium.
Observe that during the nucleation and slip events the temperature in the low-strain portion of the bar

first drops and then increases. For example, during the first nucleation, shown in Fig. 6c, d, the temperature
in the middle of the bar decreases between t ¼ 40 and 42 and then increases until the second nucleation
takes place shortly before t ¼ 43. Similar initial decreases in temperature during nucleation were also
observed by Bubner (1996). To explain this phenomenon, recall the second term of Eq. (9) for the tem-
perature evolution. Prior to the first nucleation event, the temperature profile in the bar was concave due to
the boundary conditions and the applied loading (see above), thus jhxx < 0 initially. After the strain gets
sufficiently far in the spinodal region, the instability forces the strain in the middle of the bar to decrease, so
that the strain rate, and hence the last term in the right-hand side of second term of (9), are negative:
Ahuxt < 0. The second term, cu2xt, is positive, but at non-zero A and sufficiently small uxt it is smaller than the
magnitude of the third term. Thus, for a short time, the combination of the first and third negative terms
forces the temperature to decrease. Of course, the decrease in temperature eventually makes its profile
locally convex, thus changing the sign of the first term to positive, and, as the amplitude of uxt becomes
large enough, the second term dominates and the overall temperature rate becomes positive again. We note
that while the temperature may slightly decrease prior to self-heating in experiments, the cooling observed
here (e.g. h < h0 at t ¼ 42 and 58 in Fig. 6d, f) seems unrealistically severe. We note, however, that at lower
heat conductivity or higher loading rates, self-heating is much more prevalent during loading than self-
cooling, as we shall see below. In addition, taking convection into account would prevent the temperature
from dropping below h0 in the simulation considered above.
As we reduce j, the time it takes for the system to remove the heat, which is generated by the trans-

formation and constantly supplied by the loading, increases (recall that time scale introduced by the heat
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conduction is given by (11)). A representative picture for the intermediate values of j is shown in Fig. 7.
Unlike the isothermal and almost isothermal (large j) cases, the strain profiles are rather smooth in this
case, especially near the low-strain-phase portion. Following the first nucleation event (t ¼ 38 to 41 in Fig.
7c), the interfaces attempt to slow down (while the strain profile sharpens) to the equilibrium locations, but,
due to the presence of the temperature gradient, are unable to do so quickly enough before the increasing
applied strain carries a large portion of the bar in the spinodal region (t ¼ 41). The spinodal instability then
increases the strain gradients in this portion and smoothens the strain profile (thus quickly ‘‘moving’’ the
interfaces), a behavior typical during a slip event (t ¼ 41 to 45). Afterward, the system again attempts to
sharpen the strain profile, and the interfaces slow down (t ¼ 45 to 50 in Fig. 7e), before a large portion of
the bar again has strain in the spinodal region and the smoothening takes place (t ¼ 50 to 54) etc. In
contrast to the stick–slip interface dynamics observed above, the phase boundaries now move in an ir-
regular, slowing-down–speeding-up fashion (one can say that only dynamic slip events are now observed).
This is caused by the competition between spinodal instability (which, in the absence of time-dependent
loading, would cause relaxation to a sharp-interface equilibrium) and the stabilization due to loading which

Fig. 5. The effect of heat conductivity j on the end load versus elongation curve SðdÞ during loading: c ¼ 0:1, A ¼ 0:03, h0 ¼ 50,

ti ¼ 0:01, _dd ¼ 0:016. The number of phase boundaries is denoted by N.
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is aided by the inability of the system to remove the heat quickly enough. Eventually, the two interfaces
move close enough to each other for the phase annihilation to take place, so that the whole bar is trans-
formed to the high-strain phase.
Thus, as j is decreased to the intermediate values, the serrations previously caused by the stick–slip

dynamics, smoothen out. The interface motion is now smooth (although irregular), and the only true
serrations are caused by the nucleation and phase annihilation events. Such behavior is observed in tension
experiments on polycrystalline shape-memory wires conducted in air (Leo et al., 1993; Shaw and Ky-
riakides, 1995).
As we decrease j to much smaller values, the nucleation of a pair of interfaces and their irregular motion

initially take place, but eventually the smooth interface motion is stopped by the tendency of the system to
form multiple boundaries. This is caused by the additional dispersion mentioned above in the linear stability
analysis of Section 4. The dispersion is especially pronounced at small (but non-zero) values of j. Recall
that with non-zero latent heat, the modes grow slower as j decreases. It can also be shown that the number
of instability modes amplified the most increases with the length of the portion of the bar inside the

Fig. 6. Solutions at j ¼ 100: (a) end load versus elongation SðdÞ; (b) released heat Q ¼ 
jhxjx¼1x¼0, normalized by the initial and end

temperature h0, versus d; (c) strain and (d) temperature profiles during nucleation: t ¼ 40 to 46; (e) strain and (f) temperature profiles

during first stick–slip motion event: t ¼ 46 to 59. Due to symmetry of solutions, only half of the bar is shown in the strain profiles.
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spinodal region. Thus the nucleation of multiple interfaces does not occur until a substantial portion of the
bar has strain in spinodal region. As Fig. 5 shows, up to eight boundaries form altogether at j ¼ 0:0004, as
opposed to four in the almost isothermal case j ¼ 100. After the nucleation takes place, the severe in-
stability sharpens the interfaces (recall that the growth rate xn for linear instability is much higher at higher
instability mode numbers n; the growth rate also increases as the strain gets deeper in the spinodal region),
so that the strain profile is now piecewise-smooth. See the case of j ¼ 0:0025 (Fig. 8), in which the for-
mation of six sharp interfaces takes place at t ¼ 63. Following the formation of multiple interfaces (tP 63
in Fig. 8e), stick–slip interface motion and nucleation and annihilation events are observed, accompanied
by serrations in the end load. No smooth interface motion occurs after the sharp interfaces have been
formed.
Thus at small j two types of interface motion are observed: the smooth irregular slow–fast motion

following the first nucleation, and the stick–slip motion after additional boundaries have been formed. As j

Fig. 7. Solutions at j ¼ 0:05: (a) end load versus elongation SðdÞ; (b) ratio of released heat to initial temperature, Q=h0, versus d; (c)
strain (quarter of the bar) and (d) temperature (half of the bar) profiles during the time interval t ¼ 38 to 45; (e) strain and (f) tem-

perature profiles (half of the bar) during the time interval t ¼ 45 to 54.
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decreases, less and less of the load–elongation curve corresponds to the smooth interface motion, with the
severe self-heating of the bar (see the temperature profiles in Figs. 8d,f) speeding up the nucleation process.
The heating of the bar at smaller j also creates an overall positive slope of the load–elongation curve,
commonly observed in experiments conducted under more adiabatic loading conditions (Leo et al., 1993;
Shaw and Kyriakides, 1995) (at higher loading rates and in a less convective medium, such as air).
Finally, in the adiabatic case, j ¼ 0, no smooth interface motion is observed, and there are serrations

due to nucleation and annihilation events and stick–slip interface dynamics. This case is rather special,
because the fixed-temperature boundary conditions (fifth term of (9)) are now irrelevant. Thus, unlike the
case with non-zero j, no significant temperature gradient is created during loading in the low-strain phase,
and both strain and temperature increase in time and are nearly uniform in space (some gradient is caused
by inertia) until the first instability occurs. Recall from the linear stability analysis (Section 4) of the

Fig. 8. Solutions at j ¼ 0:0025: (a) end load versus elongation SðdÞ; (b) ratio of released heat to initial temperature, Q=h0, versus d; (c)
strain and (d) temperature profiles prior to the multiple interface formation: t ¼ 30 to 63; (e) strain and (f) temperature profiles during

the stick–slip interface motion following the multiple interface formation: t ¼ 63 to 71. Due to symmetry of solutions, only half of the

bar is shown in the strain profiles.
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uniform-strain equilibria, with strain w and temperature h, that in the adiabatic case the instability con-
dition is that the adiabatic sound speed ca ¼ k þ n ¼ A2h þ r̂r0ðwÞ must vanish. Much like in the isothermal
case, nucleation does not take place until the whole bar has strain sufficiently deep in the spinodal region so
that the adiabatic speed ca (as opposed to the isothermal speed c ¼ r̂r0ðwÞ ¼ n in the isothermal case) be-
comes negative. This is why the first nucleation occurs much later than in non-zero-j cases, where the
temperature, and hence strain, gradients make it possible for nucleation to occur after only a portion of the
bar has strain in the spinodal region. After the nucleation, the temperature profile is no longer continuous
in the adiabatic case.
Observe that during the irregular interface motion at the intermediate values of j, both released heat and

the end load (as well as strain and temperature fields) undergo damped oscillations in time (or as functions
of applied strain d). See Fig. 7. This can be explained if we recall the first term of Eq. (16) derived above for
the displacement field alone. As mentioned above, when strain is in either of the phase regions, this
equation describes damped nonlinear (and nonlocal) waves in strain. While there certainly are inertia waves
damped by viscosity (which are also captured by the simulations and are distinctly more visible as viscosity
is decreased––see Section 5.3), the waves observed here are primarily due the heat conduction. To show
this, we neglect the inertia terms in (16, first term) and arrive at

cwtt ¼ jðr̂rðwÞÞxx þ cjwxxt þ wt½Aðr̂rðwÞ 
 SðtÞÞ 
 r̂r0ðwÞ� þ S0ðtÞ; ð21Þ

where wðx; tÞ ¼ uxðx; tÞ is the strain field. One can see that, even though the inertia term has been neglected,
the nonlinear oscillations persist for general (intermediate) values of j. As before, there are two damping
terms, linear viscosity-like damping cjwxxt and nonlinear damping term wt½Aðr̂rðwÞ 
 SðtÞÞ 
 r̂r0ðwÞ�. As j
tends to infinity, Eq. (21) reduces to cwxxt ¼ ðr̂rðwÞÞxx, and the oscillations (in the absence of inertia) dis-
appear. Similarly, there are no oscillations (not due to inertia) when j ¼ 0. But at the intermediate values of
j, one can expect damped oscillations of strain (and thus, via (14), temperature) due to heat conduction.

5.2. Effect of A and h0

Parameter A controls the amount of latent heat and thus measures the coupling between the temperature
and deformation fields. As Fig. 9 shows, when A is sufficiently small (e.g. A ¼ 0:0003, A ¼ 0:003), the two
fields are very weakly coupled, and thus the problem is almost purely mechanical, as in the isothermal case.
Thus, we observe behavior similar to that of the isothermal model (Vainchtein and Rosakis, 1999). In this
case, up to four interfaces form and then propagate in a stick–slip manner. As we increase A, the first
nucleation occurs sooner, since the temperature gradient caused by the loading induces a more substantial
strain gradient at higher A. Naturally, the load–elongation curve shifts up as A is increased, in view of (5),
but only the ‘‘temperature-free’’ portion of the end load, S–Ah0, is shown in Fig. 9.
When A becomes sufficiently high (e.g. A ¼ 0:01 in Fig. 9), the slow–fast interface motion described

above is observed. The amplitude of end-load oscillations decreases as A grows. Overall, the latent heat has
a stabilizing effect on the transformation: as A increases, fewer boundaries are formed (only two at A ¼ 0:6
versus four at small A) and the strain profile smoothens. Recall from the analysis of Section 4 that latent
heat slows down the growth of instabilities. Incidentally, in the adiabatic case j ¼ 0 no instability takes
place at A ¼ 0:6, since the adiabatic sound speed is always positive when latent heat is sufficiently high,
while in the non-zero-j case the temperature-induced instability occurs when strain enters the spinodal
region (isothermal sound speed vanishes). Observe also the increasing overall slope of the load–elongation
curve as A grows.
The effect of dimensionless ambient temperature, h0, is shown in Fig. 10. In addition to shifting the end-

load curve up by Ah0, increasing ambient temperature also increases the overall heating of the bar during
loading, thus resulting in a wider thermal hysteresis. Similar to the latent heat constant A, higher initial
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temperature results in the earlier first nucleation. The period and amplitude of the end-load oscillations do
not seem to be affected much by the value of h0.

5.3. Effect of c

The effect of the third parameter, dimensionless viscosity c, at the intermediate value of the heat con-
duction, j ¼ 0:05, is shown in Fig. 11. At smaller c (dashed and solid curves) the figure clearly shows two
kinds of oscillations in both end load and released heat. The higher-frequency oscillations are the usual
damped sound waves, and these are much more pronounced at smaller c. The lower-frequency oscillations
correspond to the damped oscillations mentioned above that are primarily due to heat conduction. These
oscillations are actually damped more as c is decreased, since the ‘‘inertia’’ term for these oscillations (recall
first term of (16), (21)) decreases as c is decreased. In general, lower viscosity leads to higher instability
growth rate (recall Fig. 4c) and thus shortens the time needed for interface sharpening and nucleation.

Fig. 9. The effect of the parameter A on the ‘‘temperature-free’’ part of the end load versus elongation curve SðdÞ–Ah0 during loading:
c ¼ 0:1, j ¼ 1, h0 ¼ 50, ti ¼ 0:01, _dd ¼ 0:016.
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5.4. The effect of the loading rate on hysteresis

Finally, we remark on the effect of the loading rate on the size and other features of the hysteresis loops
for our model. See Fig. 12. At slow loading ( _dd ¼ 0:0016) only two interfaces are formed, and these move in
the stick–slip fashion during virtually isothermal phase transformation. Thus, unlike the model of Leo et al.
(1993), the present model predicts the isothermal hysteresis observed at quasistatic loading.

Fig. 10. The effect of dimensionless ambient temperature h0 on the ‘‘temperature-free’’ part of the end load versus elongation curve
SðdÞ–Ah0 during loading: c ¼ 0:1, j ¼ 0:05, A ¼ 0:03, ti ¼ 0:01, _dd ¼ 0:016. Solid curve: h0 ¼ 30, dashed curve: h0 ¼ 50, dash-dotted

curve: h0 ¼ 70.

Fig. 11. The effect of the parameter c on the (a) end load versus elongation curve SðdÞ, (b) the ratio released heat to initial temperature,
Q=h0, during loading. Solid curve: c ¼ 0:05, dashed curve: c ¼ 0:1, dash-dotted curve: c ¼ 0:2. Other parameters: j ¼ 0:05, h0 ¼ 50,

A ¼ 0:03, ti ¼ 0:01, _dd ¼ 0:016.
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As the loading rate is increased ( _dd ¼ 0:016), more interfaces are formed (up to four), since the thermal
effects induce instability. The serrations formerly caused by the stick–slip motion smoothen, while the
interfaces move in an irregular slow–fast fashion, as described above. At even higher loading rate
( _dd ¼ 0:016) there are more pronounced oscillations in end load, due to viscous stabilization (which delays
the nucleation of the first two-phase boundaries at higher loading rates), but the interface motion is smooth
and not stick–slip. Notice that the two additional interfaces are formed earlier at the higher _dd, due to the
higher temperature gradient.
The size of the hysteresis (defined as the maximum width of the loop) increases with the loading rate, as

shown in Fig. 13. Part of the increase is due to the viscous effects but the main contribution is from the
thermal effects. Observe that the overall slope of the loops also increases, due to a more substantial heating
(cooling) of the bar during loading (unloading) at higher rates. Both of these observations, as well as
formation of more interfaces at higher loading rates, are in qualitative agreement with experiments (Leo
et al., 1993).

Fig. 12. The effect of the dimensionless loading rate _dd on formation and motion of phase boundaries: j ¼ 1, c ¼ 0:1, h0 ¼ 50, A ¼ 0:03,
ti ¼ 0:01.
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6. Summary and concluding remarks

In this paper we considered a thermomechanical model of martensitic phase transitions in thin bars and
wires. While intentionally simplified, the model includes both nonlinearly elastic mechanical description,
with inertia and internal dissipation via viscous stresses, and thermal dissipation in the form of heat
conduction. The model also incorporates in the simplest way the strong coupling between temperature and
deformation fields, thus taking latent heat of transformation into account. In this first, exploratory study
of the model we have focused on the role of the primary dimensionless parameters. The main conclusions
are:

• The model is capable of predicting both rate-independent isothermal hysteresis at quasistatic loading and
additional, rate-dependent hysteresis due to thermal effects.

• At high heat conductivity the behavior of the system is ‘‘almost isothermal’’: similarly to the isothermal
case, interfaces move in a stick–slip fashion, and the heat is quickly removed during nucleation and slip
events. Such non-smooth interface motion is also present in case of small latent heat, i.e. when the cou-
pling between temperature and deformation fields is weak, and at sufficiently slow applied loading. The
resulting hysteresis loops are serrated.

• At intermediate values of heat conductivity (or larger latent heat) and faster loading, the stick–slip mo-
tion is partially replaced by a smooth, yet irregular, slow–fast interface motion accompanied by damped
oscillations in the end load and released heat. These nonlinear oscillations are due to heat conduction
and persist even when inertia is neglected. Their period and amplitude also depend on the viscosity co-
efficient and the loading rate.

• At sufficiently small heat conductivity, the smooth propagation of phase boundaries is eventually
blocked by formation of multiple interfaces caused by a dispersion in the instability growth rate. After
these additional boundaries have formed, stick–slip interface motion takes place. In the adiabatic case
(zero heat conduction) only stick–slip motion is observed.

Fig. 13. The effect of _dd on the size and overall slope of the hysteresis loops: j ¼ 1, c ¼ 0:1, h0 ¼ 50, A ¼ 0:03, ti ¼ 0:01. Only upper
halves of the hysteresis loops (above the Maxwell line) are shown. Dash-dotted line depicts the quasistatic (isothermal) hysteresis as

predicted by Vainchtein and Rosakis (1999).

3406 A. Vainchtein / International Journal of Solids and Structures 39 (2002) 3387–3408



• As the applied loading rate is increased, self-heating (self-cooling) of the bar during loading (unloading)
are observed and more interfaces are formed. These thermal effects lead to the increasing hysteresis size.
Wider loops are also observed at higher latent heat and ambient temperature.

• The linearization about an unstable uniform-strain equilibrium and the effect of latent heat, viscosity and
heat conductivity on the growth rate of instabilities were also discussed. In particular, the analysis re-
veals the connection between the special isothermal and adiabatic cases and the general case of heat-con-
ducting material.

The numerical experiments presented here clarify the role of heat conduction, viscosity, latent heat and
loading rate on the size and qualitative features of the hysteresis loop and the dynamics of interface
propagation. We hope that the simplified model considered here will allow us to carry out more analytical
work to confirm some of these predictions. In particular, further simplifications, such as study of traveling
wave solutions and the case with neglected inertia term and trilinear, rather than fully nonlinear, material
may be useful. In addition, simulations of inner loops (unloading the bar before the complete transfor-
mation has occurred and reloading) are currently under way.
In order to conduct a quantitative comparison with experiments, however, one must consider a more

sophisticated model. In particular, such a model should include convective heat exchange with the sur-
rounding medium, in order to explain the difference in the hysteresis size in experiments conducted in water
and air (Leo et al., 1993), and the dependence of Maxwell strains on temperature. It should also take into
account the fact that austenite and martensite have different thermal properties. The situation is further
complicated by the lack of experimental data in the spirit of Leo et al. (1993) and Shaw and Kyriakides
(1995) for single-crystal shape-memory-alloy wires, for which the present model is relevant.
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